1. Catalog Description –
 Credits: 3.
 Introduction to the science of ceramic processing, with emphasis on theoretical fundamentals. Examples of state-of-the-art industrial processes discussed. Building on the knowledge of the technology and science of processing of modern technical ceramics students learn to critically analyze the literature and discuss fundamentals. Topics include the nature of fine particles, forming methods and consolidation by heat.
2. Prerequisites – None
3. Course Objectives
 • To understand and apply basic and advanced principles of ceramic processing, including characterization techniques, colloid and surface science, sol-gel techniques, particle mechanics, ceramic forming and sintering, and processing property relationships.
 • To learn how to review literature in science and engineering.
 • To improve communication and presentation skills.
4. Instructor – Dr. Wolfgang Sigmund. Office location: 225 Rhines Hall
 Telephone: 352/846-3343 (office)
 E-mail address: wsigm@mse.ufl.edu
 Web site: http://sigmund.mse.ufl.edu/classes.htm
 Office hours: Monday 1-3pm
5. Teaching Assistant – NONE
6. Meeting Times – M.W,F 8th period
7. Class schedule - Three hours of class time each week.
8. Meeting Location – Larsen 310
9. Material and Supply Fees - None.

You must have access to a computer and the following software to complete course assignments:
 • Word processing software, such as Word.
 • Spreadsheet software, such as Excel.
 • Pdf writer.
 • UF e-learning.
This course will use Sakai as an electronic course management system. The course website will have reading and homework assignments, updated grades, and course announcements. You can access Sakai via e-learning from https://lss.at.ufl.edu/ by clicking on Sakai and logging in with your Gatorlink ID and password.
11. Recommended Reading –
 J. Reed, Principles of Ceramic Processing, 2nd edition, John Wiley and sons, (1995);
 R. Hunter, Introduction to Modern Colloid Science, Oxford University Press, (1993);

12. **Course Outline**

A total of 40 semester hours, 27 interactive lectures and 9 student exercise hours, 4 hour exams.

<table>
<thead>
<tr>
<th>#</th>
<th>Topics</th>
<th>Lectures</th>
<th>HW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to Ceramic Fabrication Processes (Chapter 1, pages 1-32)</td>
<td>3</td>
<td>HW 1</td>
</tr>
<tr>
<td></td>
<td>Overview of ceramic materials and processing; definition of ceramics and the distinctions between ceramic, metals, polymers; ceramic materials and products; classification by function; modern materials needs; steps in ceramic processing. Societal needs, impacts from global community on ceramic markets. Job market, outlook on ceramics in the future.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Synthesis of Powders (Chapter 2, pages 37-91)</td>
<td>3</td>
<td>Exam 1 on September 6</td>
</tr>
<tr>
<td></td>
<td>Terminology; desirable powder characteristics; preparation techniques by mechanical and chemical methods; oxide and non-oxide powders.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Powder Characterization (Chapter 3, pages 97-138)</td>
<td>3</td>
<td>HW 2</td>
</tr>
<tr>
<td></td>
<td>Physical characterization; chemical and phase composition; surface characterization.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Science of Colloidal Processing (Chapter 4, pages 141-189)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Particle mechanics and particle rheology.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Sol-Gel Processing (Chapter 5, pages 193-249)</td>
<td>2</td>
<td>Exam 2 on September 27</td>
</tr>
<tr>
<td></td>
<td>Acid/base catalysis; controlled drying agents; powders; fibers; monoliths.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Mixing and Packing of Powders (Chapter 6, pages 253-276)</td>
<td>1</td>
<td>HW 3</td>
</tr>
<tr>
<td></td>
<td>Beneficiation and processing additives, comminution, batching, mixing, and granulation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Forming of Ceramics (Chapter 7, pages 279-333)</td>
<td>5</td>
<td>Exam 3 on October 14</td>
</tr>
<tr>
<td></td>
<td>Powder consolidation and forming of ceramics, colloidal forming methods: drained techniques, direct casting and solid freeform fabrication. Pressing, extrusion, injection molding.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Drying, Debinding and Microstructural Characterization of Green Bodies (Chapter 8, pages 337-362)</td>
<td>1 lecture</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Sintering and Microstructure Development (Chapter 9, pages 365-446)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Classification of sintering; importance of sintering; sintering property relationship; driving forces for sintering; diffusion; defects and defect chemistry. Mechanisms of sintering; models and sintering equations; densification; grain growth. Effects of heterogeneities; anisotropic densification; sintering; liquid-phase sintering; hot pressing; hot isostatic pressing. |

| 5 lectures |
| Exam 4 on October 30 |

Class presentations for graduate students are scheduled from November 1 through December 2. Students will be assigned to topics in the third week of the semester.

Outline of topics:
- November 1: Nanopowders (0-dimensional)
- November 4: Nanofibers (1-dimensional)
- November 6: Nanosheets (2-dimensional)
- November 8+11: No classes due to Homecoming and Veteran’s day:
- November 13: Nanocomposites (3-dimensional)
- November 15: Spark Plasma Sintering
- November 18: Flash Sintering
- November 20: Ceramics as energy harvesting materials
- November 22: Ceramics as energy conversion materials
- November 25+27: No classes due to conference.
- November 29: No class due to Thanksgiving
- December 2: Ceramics as energy storage materials

13. **Attendance and Expectations** - All students are expected to attend class. Attendance also requires participation in class by solving problems in small groups and presenting the solutions in front of the class. Cell phones should be turned off. Reading of newspapers, work on assignments for this or other classes, or other activities that are not part of the class are not allowed during class time.

14. **Grading** –
- Best 3 out of 4 exams: 60%
- 2 critical analysis papers: 20%
- Class presentation: 10%
- Class participation: 10%

15. **Grading Scale** –

<table>
<thead>
<tr>
<th>Percentage</th>
<th>≥92</th>
<th>≥88</th>
<th>≥84</th>
<th>≥80</th>
<th>≥76</th>
<th>≥72</th>
<th>≥68</th>
<th>≥65</th>
<th>≥62</th>
<th>≥59</th>
<th>≥56</th>
<th><56</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter Grade</td>
<td>A</td>
<td>A-</td>
<td>B+</td>
<td>B</td>
<td>B-</td>
<td>C+</td>
<td>C</td>
<td>C-</td>
<td>D+</td>
<td>D</td>
<td>D-</td>
<td>E</td>
</tr>
</tbody>
</table>

Grades are not curved. No rounding.
There is no final exam in this class.
“Graduate students need an overall GPA of 3.00 truncated and a 3.00 truncated GPA in their major (and in the minor, if a minor is declared) at graduation.” For more information on grades and grading policies, please visit: http://gradcatalog.ufl.edu/content.php?catoid=4&navoid=907#grades “

16. Requirements for class attendance and make-up exams, assignments, and other work are consistent with university policies that can be found at: https://catalog.ufl.edu/ugrad/current/regulations/info/attendance.aspx

Homework is due online in e-learning, no late homework will be accepted. If you have trouble with on time submission on e-learning you need to get a trouble ticket from the UF help desk before the deadline and also send an email alerting the instructor about the problem. Late submissions without trouble ticket and email alert will not be considered.

Make-up Exam Policy – There are no make-up exams since 4 exams are offered and only 3 exams are needed.

Students are required to read the chapter for the specific lecture in advance. Reading assignments are provided in the course outline. Students will be called on in class by their name to answer questions about the chapter contents. This will be graded as class participation.

17. Honesty Policy – All students admitted to the University of Florida have signed a statement of academic honesty committing themselves to be honest in all academic work and understanding that failure to comply with this commitment will result in disciplinary action. This statement is a reminder to uphold your obligation as a UF student and to be honest in all work submitted and exams taken in this course and all others.

Note that failure to comply with this commitment will result in disciplinary action compliant with the UF Student Honor Code Procedures. See http://www.dso.ufl.edu/sccr/procedures/honorcode.php

18. Accommodation for Students with Disabilities – Students Requesting classroom accommodation must first register with the Dean of Students Office. That office will provide the student with documentation that he/she must provide to the course instructor when requesting accommodation.

19. UF Counseling Services – Resources are available on-campus for students having personal problems or lacking clear career and academic goals. The resources include:

 UF Counseling & Wellness Center, 3190 Radio Rd, 392-1575, psychological and psychiatric services.
 Career Resource Center, Reitz Union, 392-1601, career and job search services.

20. Software Use – All faculty, staff and student of the University are required and expected to obey the laws and legal agreements governing software use. Failure to do so can lead to monetary damages and/or criminal penalties for the individual violator. Because such violations are also against University policies and rules, disciplinary action will be taken as appropriate. We, the members of the University of Florida community, pledge to uphold ourselves and our peers to the highest standards of honesty and integrity.

21. Syllabus Changes – I reserve the right to make changes in the syllabus as needed. Any changes will be clearly announced on Sakai and in class.

Sections in italics are from the UF catalog or from college of engineering prescribed syllabus.

Version 4; August 28, 2013