Changes to this syllabus will be provided via the ELearning/Canvas platform. Such changes may include those required by policy changes, my travel (or other absence), changes in the speed of course coverage, university closure, errors in previous syllabus versions, or other reasons.

1. Description:

Nuclear applications of fluid mechanics, heat transfer and thermodynamics. Two-phase flow and boiling heat transfer. Heat transfer mechanisms in reactor core and sub-channel thermal hydraulics. Steam generator, power cycles, balance of plant. Introduction to thermal design for reactors.

2. Prerequisite:

EML 4140 + (EGN 3353C or ENU 4133)

3. Program Educational Objectives Supported by Course

1. Graduates will have successful careers in Nuclear Engineering or related disciplines.
2. Graduates will pursue advanced degrees or continuing education.

4. Professional Components Supported by Course

1. Provide students with the ability to apply advanced mathematics, computational skills, science and engineering science, including atomic and nuclear physics, to identify, formulate, analyze, and solve nuclear and radiological engineering problems.
4. Provide students with the skills needed to communicate effectively, work collaboratively, and understand their professional and ethical responsibilities and the impact of engineering solutions in a societal and economic context so they can pursue successful, productive careers in nuclear and radiological engineering.

5. Program Outcomes Supported by Course

Outcome a: an ability to apply knowledge of mathematics, science, and engineering.
Outcome e: an ability to identify, formulate, and solve engineering problems.
Outcome h: the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental and societal context.
Outcome i: a recognition of the need for life-long learning and the ability to adapt this to engineering practice;
Outcome k: an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice
Outcome l: an ability to apply advanced mathematics, science, and engineering sciences, including atomic and nuclear physics, to nuclear and radiological systems and processes
Outcome n: an ability to work professionally in on or more of the areas of: nuclear power systems, nuclear instrumentation and measurement, radiation protection and shielding, and radiation sources and applications
6. Instructor
DuWayne Schubring, Assistant Professor
205 Nuclear Sciences Building
352-392-0852
dlschubring@ufl.edu (best way to reach me)
Office hours: MWF 1345-1445 (tentative)

7. Teaching Assistant:
none

8/9/10. Course Meetings:

MF, 1500-1550 (“Period” 8); W, 1500-1655 (“Periods” 8 and 9), NSB 227. Final Exam: December 12, 1230-1430 (also in NSB 227).

11. Material and Supply Fees:

None

12. Text (Optional):

This text (“T&K”) may be useful as a reference for this course, ENU 4191/4192, and your future career and may be worth purchasing. However, you can complete this course without it. I do not recommend renting the book or buying it with intent to sell it back at the end of the term.

Extensive notes are available on Canvas, as both a large number of small files and a single .pdf, suitable for printing.

To complete some of the homework and projects in this course, access to a programming or scripting language such as MATLAB, FORTRAN, C, C++ (etc.), a spreadsheet application, and Engineering Equation Solver (EES) will be required. EES is available to all students in this course via Canvas.

13. References

2. Any undergraduate textbooks (typically aimed at mechanical engineering students) on thermodynamics, fluid dynamics, and heat transfer. Fluid Mechanics, F. M. White (7th edition) was the text for ENU 4133 and is recommended.
14. Course Outline

The course is organized into 18 modules, the first 14 of which are drawn in major part from T&K. The materials for each module are in separate folders on the course website.

1. Nuclear Applications of Fluid Mechanics and Heat Transfer [T&K, Sections 9.6, 10.5.1.1.3]
2. Averaging in Two-Phase Flow [T&K, Sections 5.1 through 5.4]
3. Transport in Two-Phase Flow [T&K, Sections 5.5 through 5.7]
4. Homogeneous Equilibrium Model [T&K, Sections 11.1 through 11.4, 11.5.2]
5. Separated Flow Model and Void Fraction Correlations [T&K, Section 11.5]
6. Pressure Loss in Two-Phase Flow [T&K, Section 11.6]
7. Flow Regimes in Two-Phase Flow [T&K, Section 11.2]
11. Nuclear Heat Transport [T&K, Sections 3.1 through 3.6.1, 3.9, 8.1 through 8.3, 8.5, 8.7]
12. Single Channel Analysis (SCA) Methods [T&K, Chapter 14]
13. Critical Flow [T&K, Section 11.7]
15. Thermal Design Principles
16. Steam Generators
17. Natural Circulation (schedule permitting)
18. Condensation (schedule permitting)

Modules 1-14 and 16 are supported by online lecture notes. Since T&K is primarily a graduate-level textbook and is not written in the same order as this course is taught, these notes are intended to distill the key points of the modules for use in this course. Particularly for modules 12, 14, and 16, these notes will likely form your primary study material. The only notes available for Module 15 are those you take yourself. Schedule permitting, Modules 17 and 18 will be prepared and notes disseminated at a later date.

The coursework is as follows, with due dates shown on the day-by-day schedule.

1. Exams (125 points each)
 (a) Modules 1 through 5
 (b) Modules 6 through 9
 (c) Modules 10 through 13
 (d) Comprehensive, focus on Modules 14 and after
2. Mini-Projects (50 points each)
 (a) Separated Flow Model (Void Fraction Correlations) and Pressure Drop
 (b) Nuclear Heat Transport
4. Homework (25 points each)
 (a) Nuclear Applications of Fluid Mechanics and Heat Transfer
 (b) Averaging in Two-Phase Flow and Transport in Two-Phase Flow
 (c) Homogeneous Equilibrium Model
(d) Boiling Heat Transfer – Fundamentals
(e) Boiling Heat Transfer – Correlations
(f) Boiling Heat Transfer – Critical Heat Flux
(g) Critical Flow
(h) Nuclear Power Cycles

<table>
<thead>
<tr>
<th>Week</th>
<th>Day</th>
<th>Date</th>
<th>Due</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>22 Aug</td>
<td></td>
<td>Introduction and Administrivia</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>24 Aug</td>
<td></td>
<td>Nuclear Applications of Fluid Mechanics and Heat Transfer</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>26 Aug</td>
<td></td>
<td>Nuclear Applications of Fluid Mechanics and Heat Transfer</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>29 Aug</td>
<td></td>
<td>Averaging in Two-Phase Flow</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>31 Aug</td>
<td>HW 1</td>
<td>Averaging in Two-Phase Flow; Transport in Two-Phase...</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>2 Sep</td>
<td></td>
<td>Transport in Two-Phase Flow</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>5 Sep</td>
<td></td>
<td>NO CLASS (UF HOLIDAY)</td>
</tr>
<tr>
<td>3</td>
<td>W</td>
<td>7 Sep</td>
<td>HW 2</td>
<td>Transport in Two-Phase Flow; HEM</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>9 Sep</td>
<td></td>
<td>Homogeneous Equilibrium Model</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>12 Sep</td>
<td></td>
<td>Separated Flow Model and Void Fraction Correlations</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>14 Sep</td>
<td>HW 3</td>
<td>Separated Flow Model and Void Fraction Correlations</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>16 Sep</td>
<td></td>
<td>Pressure Loss in Two-Phase Flow</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>19 Sep</td>
<td></td>
<td>Pressure Loss in Two-Phase Flow</td>
</tr>
<tr>
<td>5</td>
<td>W</td>
<td>21 Sep</td>
<td>Exam 1</td>
<td>Exam 1</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>23 Sep</td>
<td></td>
<td>Flow Regimes in Two-Phase Flow</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>26 Sep</td>
<td></td>
<td>Flow Regimes in Two-Phase Flow</td>
</tr>
<tr>
<td>6</td>
<td>W</td>
<td>28 Sep</td>
<td>MP 1</td>
<td>Flow Regimes in Two-Phase Flow; Boiling – Fundamentals</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>30 Sep</td>
<td></td>
<td>Boiling Heat Transfer – Fundamentals</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>3 Oct</td>
<td></td>
<td>Boiling Heat Transfer – Fundamentals</td>
</tr>
<tr>
<td>7</td>
<td>W</td>
<td>5 Oct</td>
<td>HW 4</td>
<td>Boiling Heat Transfer – Correlations</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>7 Oct</td>
<td></td>
<td>Boiling Heat Transfer – Correlations</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>10 Oct</td>
<td>HW 5</td>
<td>Boiling Heat Transfer – Critical Heat Flux</td>
</tr>
<tr>
<td>8</td>
<td>W</td>
<td>12 Oct</td>
<td></td>
<td>Boiling Heat Transfer – Critical Heat Flux</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>14 Oct</td>
<td></td>
<td>NO CLASS (UF HOLIDAY)</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>17 Oct</td>
<td></td>
<td>Nuclear Heat Transport</td>
</tr>
<tr>
<td>9</td>
<td>W</td>
<td>19 Oct</td>
<td>Exam 2</td>
<td>Exam 2</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>21 Oct</td>
<td></td>
<td>Nuclear Heat Transport</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>24 Oct</td>
<td></td>
<td>Nuclear Heat Transport</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>26 Oct</td>
<td>HW 6</td>
<td>Single Channel Analysis</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>28 Oct</td>
<td></td>
<td>Single Channel Analysis</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>31 Oct</td>
<td></td>
<td>Critical Flow</td>
</tr>
<tr>
<td>11</td>
<td>W</td>
<td>2 Nov</td>
<td>MP 2</td>
<td>Critical Flow</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>4 Nov</td>
<td></td>
<td>Nuclear Power Cycles</td>
</tr>
</tbody>
</table>
This day-by-day outline must be understood as a draft. Lecture coverage may move forward or back, as necessary. Homework deadlines and the Project (Code) deadline will not be earlier than listed, but may be later. Since the Project (Report) is due the last day of class, no extension will be offered. Exam dates will not change (excluding university closure).

Classes on November 7 and 9 will be held only if (1) the lecture coverage is behind schedule and (2) I do not attend the ANS meeting.

As you make any travel plans concerning the ever-lengthening Thanksgiving holiday, note that I strongly recommend not missing class on November 21. This class period will not be cancelled and there are no electronic notes.

15. Attendance and Expectations

Attendance & Class Conduct

Skip at your peril. Attendance is not considered in the grade. However, some materials in the course will not be covered in the textbook or in the notes provided online – only in class. Some example problems and complex figures (hard to digitize, easy to make on chalkboard) fall into this category. Students are responsible for these materials.

If a student arrives late or leaves early, he/she is expected to do so with minimum level of disruption to the class in progress. There is no tolerance for mobile phones or other electronic disruptions. Such disruptions will lead to the student being told to leave the room for the duration of the class period, including during examination periods. The same principle applies to office hours or appointments – if you stop by my office and your phone rings, you will be told to leave the room for the duration of that day’s office hours (or your appointment considered over).

I reserve the right to take attendance to prioritize e-mail assistance.
Make-Up Work Policies

Absences and late-work excuses can be grouped into the categories of professional, medical, and personal.

Professional: Reasonable extensions for job/internship interviews, technical conferences, or other professional/career development reasons should be requested. Requests are typically granted, at my discretion, unless they would grant a student or group of students an unfair advantage over their peers, cause significant disruption to the course or grading schedule, or violate some UF policy.

Medical: Extensions will also be granted for (your own) medical reasons – please do not come to class if you are ill. Per UF policy, in the case of medical absences that are frequent or suspiciously-timed (e.g.; you are repeatedly, suddenly ill at deadlines), I may request a signed note from a physician or similar professional practitioner.

Personal: In addition, UF policies require accommodation for several non-academic, non-medical reasons. Extensions for these personal issues are strictly limited to those mandated by the letter of UF policies. The list of UF-approved personal reasons changes from time to time. If you have a question regarding your personal issue and if it qualifies under one of the excused absence policies, contact me in advance.

The 12-day rule will be enforced strictly. Note that the count of days is based on a per-student, not per-approved-activity basis.

Pursuant to HWCOE policy, the following statement is required: Excused absences are consistent with university policies in the undergraduate catalog https://catalog.ufl.edu/ugrad/current/regulations/info/attendance.aspx and require appropriate documentation.

For the purposes of this course, in the above-referenced list of approved absence reasons, the word “family” shall be taken to mean your parents, grandparents, great-grandparents (etc.); children, grandchildren (etc.); siblings; aunts/uncles; nieces/nephews; your spouse and the spouse of any of the above; and half- or step- “versions” of the above categories. More distant relatives (cousins, etc.), partners (excluding spouses), and pets are not included. Minor illnesses (guideline: anything meriting home care only or care at a walk-in clinic, as opposed to an ER) of family members, including minor children, do not count as serious family emergencies, nor do events such as birthdays, anniversaries, weddings, etc.

Note that any make-up work or extension will not reduce the work expected of you, but merely rearrange the timing. In the case where your approved make-up work adversely affects a group project, I may modify the assignment and/or groups for those concerned to minimize the disruption of one student’s issues on other group members.

Homework and Projects

Homework and projects will collected at the beginning of the class period at which they are due.

Assignments will require submission of hard copy. All projects, including mini-projects, must be written using word processing or typesetting software. For handwritten homework, no type of paper or writing utensil is preferred over others (within reason). In addition to the required hard copy submission, electronic submission of files used on homework (spreadsheets, etc.) may be required for some assignments, as indicated on the assignment sheet. When a hard copy is required, electronic submissions will not be accepted, will not hold your place against late-work policies, and
will not be acknowledged. For the project code, either hard copy or electronic submission will be accepted – see details on that assignment.

Assignments handed in between the due date and the next scheduled class period are worth 50% credit. Submissions after that are not accepted (0 credit). In the event that the instructor offers an extension for a given assignment, the half-credit period may be eliminated. (For example, “HW due Friday, half credit Monday” might become “HW due Monday, no half-credit available”). If so, this will be clearly disseminated to the class via e-mail. If your homework is late, the onus is on you to provide it to me; the clock does not stop until I have homework in hand. Since there is no class period after December 7, no late submissions of your project report will be accepted.

Many assignments require the use of fluid properties. Use only those properties from EES, including from the tabular listing provided on the course website.

Professional document and figure standards will be enforced on projects, including mini-projects. The onus is on you to figure out how to meet these standards in whatever programs you use to write the document and make figures. I have exactly zero sympathy for those who select a word processor without knowing how to format their text using it – complaints that the standards are not the same as a particular piece of software’s defaults will fall on deaf ears.

For those who wish to work more problems (not for credit, but for practice), selected Fall 2014 and 2015 homework assignments are available on canvas. This extra homework assignments are provided on an as-is basis, since course content, fluid properties, and homework numbering have changed for the Fall 2016 offering.

Collaboration

Projects, including mini-projects, are to be done in groups. I will assign the groups. A peer review system is in place to assure equitable workload. In the event the workload is not equitable, I reserve the right to adjust individual grades to accurately reflect contributions to the work.

The ground rules for collaboration should be decided by each group through compromise and consensus. However, regardless of the preferences of the group as a whole, each student retains the individual right to privacy and to maintain good mental and physical health. To this end, no student shall be compelled:

- To join a real-name social networking site or modify their existing use of such a site, or
- To accept a 24/7 or other onerous on-call policy.

That is: each member holds a unilateral veto on using Facebook (or some such) for your group’s work or for being contacted at all hours of the day and night.

Inter-personal issues within your group stemming from deciding group rules must be brought to me promptly for arbitration. This arbitration will focus on the guidelines above and in forming an equitable compromise (essentially, equal marginal/new inconvenience) among group members and not on determining whose activities outside this course (including personal pursuits, situations, and choices) are more meritorious.

No collaboration is permitted between teams on projects, including mini-projects. The allowed level of collaboration on homework may vary and is specified on the assignment.
Examinations

For each exam, you will receive an Exam Preview, intended to prepare you for taking the exam (both technically and procedurally). Detailed policies (including grading/curving) are included on this document. The preview will also include the specific topics addressed by the problem (for most problems), the way points are distributed among problems, and a brief list of topics within the scope of the exam.

Examinations are due at the end of the examination period. No collaboration is permitted during examinations, although you may prepare for these however you choose. Use of any unauthorized materials or any communication (including mobile phones, laptops, or face-to-face with classmates in the room) is grounds for immediate and final collection of your exam with no more work permitted and any work already completed that, in my judgement, was aided by said materials/communication not considered in grading. Examinations consist of two stages: a closed-note conceptual and open-note problem solving.

The criteria for make-up exams are the same as for extensions to other assignments. All make-up exams will be held after the regular exam, as organized with me. Note that conflicts in my proposed make-up times with your personal business will not, in general, be accommodated.

UF policy restricts make-up finals to Friday, December 16, 1500-1700, barring a conflict at that time with another make-up in a course of higher number. This rule applies regardless of your personal business, such as travel times. I strongly discourage you from making hard-to-change travel plans such as flight reservations before Friday evening.

In the unlikely event you (1) are unable to complete the exam on December 12 for allowed reasons, (2) are unable to make the UF-appointed make-up time on December 16 for allowed reasons, (3) do not make-up the exam at some other time prior to the finalization of grades on December 19, and (4) are on pace to pass the course, you will receive a grade of I (Incomplete). In the (also unlikely) case that the first three of these conditions apply but you were on pace to fail the course, UF policy requires that I assign a failing grade with the notation that you stopped participating before the end of the term. This may have implications on financial aid beyond a simple “E” grade.

Grade Appeal

All appeals of grades, including those from clerical/grade-calculation errors, must be made within 1 week of return. (This may be modified for specific assignments near the end of the term. I will announce this via e-mail as needed.)

Grade appeals must be provided in the following format:

- Include your entire assignment unmodified.
- Attach (paper clip preferred) a written summary of which problem(s) or part(s) you believe were graded inaccurately. Be as specific as possible.
- Turn in your appeal to me at class time or during office hours.
- I will review your grade appeal, contact you via your ufl.edu e-mail address, and return the assignment in class. Fairly simple appeals provided to me during office hours may be decided upon while you wait, at my discretion.

Appeals will be considered for clerical errors, addition errors, and inconsistent scoring. Grade appeals will not be entertained if you simply do not like that (for example) Part 1 was worth only
2 points with Part 2 worth 5.

On very rare occasions, if I believe the student is not acting in a good faith belief that more points are deserved, I will deem the appeal frivolous. Following two frivolous appeals, your grade appeal privilege through this method will be revoked. Further appeals must be done through the petitions process, which requires formal paperwork and department/program level involvement.

File Formats

The electronic components of assignment submissions must be in the formats requested. If you do not know how to convert your files to these formats, contact me in advance of the deadline. Not knowing your software is not an excuse for late assignments. Accepted formats may include plain text, .pdf, .csv, and EES files, as well as other file formats at my discretion.

In particular, I will not open files from students in the following formats: .ppt, .pptx, .doc, .docx. Presentation and word processing documents are best converted to .pdf.

Electronic Communication and Course Website

The primary means of communication with the class outside of class time will be e-mail listserv. These listservs will send to your @ufl.edu address only. Any inquiries regarding grading will be directed towards your @ufl.edu address only, per FERPA.

Technical and procedural questions will be answered as a reply to whatever e-mail address you used to send them. If the entire class will benefit from the answer, I may send to the class list (either in lieu of or in addition to a direct reply to you, at my discretion). If you do not wish to have a specific e-mail to me regarding technical content or course procedures replied to through the class list, you must explicitly state this in that e-mail. In such a case, I will reply directly to you and send a general-purpose announcement to the class list, not indicating who caused me to send it.

The course website has been moved to Canvas for this offering. The primary use of the website is for file storage, as all assignments, lecture notes, etc. will be provided there. I take no responsibility for downtime of this service, nor for actions of University of Florida staff that affect the website (including Canvas upgrades). The gradebook on Canvas is used to enable you to look up grades quickly. Note that this gradebook is not official. I reserve the right to correct errors, including transcription errors, from the official (spreadsheet) gradebook, to which I alone have access, until finalization of grades with the registrar.

Notes on Workload

This may well be the most conceptually difficult course you will take en route to your degree. Two-phase flow, particularly, is a challenging subject – in other fields, it is a graduate-level subject. However, it is sufficiently relevant to nuclear reactors and must be included in the curriculum.

This is likely also the first class you’ve taken with any appreciable level of engineering judgement. Often, there is not a single “right” way to analyze a problem in two-phase flow and nuclear TH. Instead, there are two or three or ten “good” ways, from which you must select the best estimate (under constraints; i.e., the five-minute vs. five-day analysis) and be able to articulate why your analysis is good. Critical thinking and communication skills are no longer “extras”, but absolutely
essential. For many students, this transition in approach is more difficult than any two-phase analysis.

This course will require a time commitment of approximately 180 hours during the semester (4 credits times 15 weeks times 3 hours per week-credit). A typical breakdown might be:

- Attending lectures (50 hours)
- Completing 8 homework assignments (40 hours, 5 each)
- Completing 2 mini-projects (20 hours, 10 each)
- Completing the Project (30 hours)
- Studying/Reviewing for exams (40 hours, 10 per exam)

These estimates refer to reasonably focused hours (hours spent playing on TwitYak, FlickChat, RedBlr, or FaceGram with a homework assignment open in the background don’t count) and are for the average student.

I am well-aware that senior students have extremely busy fall semesters. Reasonable accommodations on homework and projects will be made for professional commitments (conference attendance, taking the GRE, grad school visits, etc.) and, potentially, to minimize conflicts among senior year courses. However, I do not have an efficient means to make myself aware of all student conflicts and commitments. Therefore, it is up to you to make me aware of issues; you should always consider yourself free to request an extension, just as I will always consider myself free to deny a request.

ENU 4134 vs. 6135

The undergraduate (ENU 4134) and graduate (ENU 6135) share common lectures and a fraction of common coursework.

Letters of Recommendation/Evaluation Policy

To request a letter of recommendation/evaluation (for graduate school or otherwise), you must provide:

- A hard copy of your UF transcript.
- A hard copy of a résumé (or CV).

Letters are typically filed once per week. For students whom I know only through coursework, my letter typically focuses on an estimate of their rank-in-class and on their performance on projects and challenging problems.

I will only file one batch of letters per student during the term, for any student currently enrolled in a class with me. (This policy is designed to keep me from looking up slight changes in your rank/performance multiple times for multiple batches of letters.) I recommend that this batch occur as late as possible in the term to allow me sufficient information (sample size) on your performance to write a useful letter.

I reserve the right to refuse provide a letter for any student and am not obligated to provide a reason for such refusal.
16. Grading Criteria

There are 1000 total, equally-valuable points in the course.

- Exam 1 (125)
- Exam 2 (125)
- Exam 3 (125)
- Exam 4 (125)
- Project Code (50)
- Project Report (150)
- Mini-projects (100, 50 each)
- Homework (200, 25 each)

1. Each exam is individually curved. The details of this curve are included as part of the Exam Previews.

2. No single item exceeds 15% of your course grade. This emphasizes consistent performance in this course and limits the deleterious effect on your grade of a single poor exam.

3. Homework and exam grading in this course is “plus-based”. That is, I award you points based on correct steps, rather than deducting points for errors. As a result, a question such as, “Professor, why did you take off 2 points here?” is nonsensical, since you didn’t have the points to begin with.

4. There is no general protection against double jeopardy. Points are often allocated, particularly on exams, to each specific step and to obtaining the final, correct answer in each problem – a single error will prevent you from earning points at that step and for the final answer.

17. Grading Scale

The final grades will be assigned based on:

- A: $\geq 85\%$ (850+ points)
- B: 77-84.99\% (770-849 points)
- C: 68-76.99\% (680-769 points)
- E: $< 68\%$ (0-679 points)

I reserve the right to grant higher grades at the end of the course at my sole discretion, including the use of A-, B+, B-, and C+.

Note that the grade cut-offs for A, B, and C are somewhat lower than the “high-school scale” (90, 80, 70, etc.) under which many UF courses operate. This is not to grant inflated letter grades but rather to account for the inherently challenging nature of two-phase flow and to appropriately award genuinely excellent performances. Typically, the average GPA in ENU 4134, including graduate students in ENU 6135 (formerly 6937), is between 2.9 and 3.2.

Under no circumstances will grades of C- or any flavor of D be used. Regardless, the following statement is required by COE policy: “A C- will not be a qualifying grade for critical tracking courses. In order to graduate, students must have an overall GPA and an upper-division GPA of 2.0 or better (C or better). Note: a C- average is equivalent to a GPA of 1.67, and therefore, it does not satisfy this graduation requirement. For more information on grades and grading policies, please visit:

http://www.registrar.ufl.edu/catalog/policies/regulationgrades.html”
18. Make-up Policy

See item 15

19. Honesty Policy

UF students are bound by The Honor Pledge which states, ?We, the members of the University of Florida community, pledge to hold ourselves and our peers to the highest standards of honor and integrity by abiding by the Honor Code. On all work submitted for credit by students at the University of Florida, the following pledge is either required or implied: “On my honor, I have neither given nor received unauthorized aid in doing this assignment.” The Honor Code https://www.dso.ufl.edu/sccr/process/student-conduct-honor-code/ specifies a number of behaviors that are in violation of this code and the possible sanctions. Furthermore, you are obligated to report any condition that facilitates academic misconduct to appropriate personnel. If you have any questions or concerns, please consult with me.

20. Accommodation for Students with Disabilities

Students with disabilities requesting accommodations should first register with the Disability Resource Center (352-392-8565, https://www.dso.ufl.edu/drc) by providing appropriate documentation. Once registered, students will receive an accommodation letter which must be presented to me when requesting accommodation. Students with disabilities should follow this procedure as early as possible in the semester.

21. Health and Wellness Resources

- U Matter, We Care: If you or a friend is in distress, please contact umatter@ufl.edu or 352-392-1575 so that a team member can reach out to the student.
- Counseling and Wellness Center: http://www.counseling.ufl.edu/cwc, and 392-1575; and the University Police Department: 392-1111 or 9-1-1 for emergencies.
- Sexual Assault Recovery Services (SARS) Student Health Care Center, 392-1161.
- University Police Department at 392-1111 (or 9-1-1 for emergencies), or http://www.police.ufl.edu/

22. Academic Resources

- E-learning technical support, 352-392-4357 (select option 2) or e-mail to Learning-support@ufl.edu. https://iss.at.ufl.edu/help.shtml.
- Library Support, http://cms.uflib.ufl.edu/ask. Various ways to receive assistance with respect to using the libraries or finding resources.
- Teaching Center, Broward Hall, 392-2010 or 392-6420. General study skills and tutoring. https://teachingcenter.ufl.edu/.
23. Software Use:

All faculty, staff, and students of the University are required and expected to obey the laws and legal agreements governing software use. Failure to do so can lead to monetary damages and/or criminal penalties for the individual violator. Because such violations are also against University policies and rules, disciplinary action will be taken as appropriate. We, the members of the University of Florida community, pledge to uphold ourselves and our peers to the highest standards of honesty and integrity.

24. Course Evaluations

The University of Florida expects students to provide feedback on the quality of instruction in this course based on 10 criteria. These evaluations are conducted online at

https://evaluations.ufl.edu

Evaluations are typically open during the last two or three weeks of the semester, but students will be given specific times when they are open. Summary results of these assessments are available to students at

https://evaluations.ufl.edu/results