EMA 4020L – Metallurgy Lab
Section 4021:  W:  8th and 9th periods
Section 4022:  Th:  3rd and 4th periods
Spring 2020
Rhines 125

Please wear closed-toe shoes and pants during the lab sessions

Instructor:  G.E. Fuchs
116 Rhines Hall
846-3317
gfuch@mse.ufl.edu

Office Hours: TBD

References (Not Required):

S. Kalpakjian and S.R. Schmid
Addison-Wesley Publishing, Co., Reading, PA

Engineering Design
G.E. Dieter

Physical Metallurgy Principles, Third Edition
R.E. Reed-Hill and R. Abbaschian

R.E. Smallman and R.J. Bishop
Butterworth-Heinemann, Boston, MA, 1999

Selection of Engineering Materials
G. Lewis

Co-requisite: EMA 4120 (Phys. Met I) and EMA 4623 (Process Metallurgy)

Description: Laboratory aspects of metals processing. Science and Technology of metal and manufacturing processing.

Objective: To introduce the student to microstructure-properties-processing inter-relationships in structural materials.
Approach: Demonstrate connections between processing, microstructures and properties in metals. Use laboratory experiments to illustrate effect of processing on microstructures and properties.

Contribution of Course to Meeting the Professional Component: This is a 1 credit course which count for engineering sciences.

Relationship of Course to Program Outcomes: This course addresses the following MSE Program outcomes (Note: Numbers refer to the list of MSE Program Outcomes)

1. Apply knowledge of mathematics, science and engineering principles to materials science and engineering.
2. Design and conduct materials science and engineering experiments and analyze and interpret the data.
3. Design a materials science and engineering system, component or process to meet desired needs within realistic economic, environmental, social, political, ethical, health and safety, manufacturability and sustainability constraints.
4. Communicate technical data and design information effectively in speech and in writing to other materials engineers.

ABET

(b) an ability to design and conduct experiments, as well as to analyze and interpret data
(c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
(d) an ability to function on multidisciplinary teams
(g) an ability to communicate effectively

Grading:

Final Report: The final report will pull together by the members of each group. One report will be turned in for each group which summarize the results from the entire semester. The final report will be worth 90% of your grade and will be due on Wednesday of Finals Week (April 29th) to report all of the experimental results from the class. During the semester, results will be discussed to help the students understand the results. Class participation will also be graded (10%) and will reflect if the students are missing an excessive number of class periods.


1.) No exams will be given during the course.
2.) All grading based on curve.
3.) The reports must be original work and will be evaluated for any evidence of plagiarism (All work will be run through TurnItIn.com).
If there is any evidence of plagiarism, the paper will be given an “F” and zero-points.

Accommodation for Students with Disabilities: Students Requesting classroom accommodation must first register with the Dean of Students Office. That office will provide the student with documentation that he/she must provide to the course instructor when requesting accommodation.

UF Counseling Services: Resources are available on-campus for students having personal problems or lacking clear career and academic goals. The resources include:

- University Counseling Center, 301 Peabody Hall, 392-1575, Personal and Career Counseling.
- SHCC mental Health, Student Health Care Center, 392-1171, Personal and Counseling.
- Center for Sexual Assault/Abuse Recovery and Education (CARE), Student Health Care Center, 392-1161, sexual assault counseling.
- Career Resource Center, Reitz Union, 392-1601, career development assistance and counseling.

Software Use: All faculty, staff and student of the University are required and expected to obey the laws and legal agreements governing software use. Failure to do so can lead to monetary damages and/or criminal penalties for the individual violator. Because such violations are also against University policies and rules, disciplinary action will be taken as appropriate. We, the members of the University of Florida community, pledge to uphold ourselves and our peers to the highest standards of honesty and integrity.
<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Introduction</td>
</tr>
<tr>
<td>3</td>
<td>Rolling of Sample Material</td>
</tr>
<tr>
<td>4</td>
<td>Solidification and Segregation</td>
</tr>
<tr>
<td>5</td>
<td>Solution Heat treatments</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Aging Heat Treatment</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Spring Break</td>
</tr>
<tr>
<td>10</td>
<td>Deformation Processing and Heat Treatment</td>
</tr>
<tr>
<td>11</td>
<td>Heat Treatment: Recrystallization and Grain Growth</td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Heat Treatment and Precipitation Hardening</td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Work on report</td>
</tr>
<tr>
<td>16</td>
<td>Work on report</td>
</tr>
<tr>
<td>17</td>
<td>Final Report Due</td>
</tr>
</tbody>
</table>